процесс представления информации в виде кода

Кодирование для чайников, ч.1

Не являясь специалистом в обозначенной области я, тем не менее, прочитал много специализированной литературы для знакомства с предметом и прорываясь через тернии к звёздам набил, на начальных этапах, немало шишек. При всём изобилии информации мне не удалось найти простые статьи о кодировании как таковом, вне рамок специальной литературы (так сказать без формул и с картинками).

Статья, в первой части, является ликбезом по кодированию как таковому с примерами манипуляций с битовыми кодами, а во второй я бы хотел затронуть простейшие способы кодирования изображений.

0. Начало

Давайте рассмотрим некоторые более подробно.

1.1 Речь, мимика, жесты

1.2 Чередующиеся сигналы

В примитивном виде кодирование чередующимися сигналами используется человечеством очень давно. В предыдущем разделе мы сказали про дым и огонь. Если между наблюдателем и источником огня ставить и убирать препятствие, то наблюдателю будет казаться, что он видит чередующиеся сигналы «включено/выключено». Меняя частоту таких включений мы можем выработать последовательность кодов, которая будет однозначно трактоваться принимающей стороной.

image loader

1.3 Контекст

2. Кодирование текста

Текст в компьютере является частью 256 символов, для каждого отводится один байт и в качестве кода могут быть использованы значения от 0 до 255. Так как данные в ПК представлены в двоичной системе счисления, то один байт (в значении ноль) равен записи 00000000, а 255 как 11111111. Чтение такого представления числа происходит справа налево, то есть один будет записано как 00000001.

Итак, символов английского алфавита 26 для верхнего и 26 для нижнего регистра, 10 цифр. Так же есть знаки препинания и другие символы, но для экспериментов мы будем использовать только прописные буквы (верхний регистр) и пробел.

Тестовая фраза «ЕХАЛ ГРЕКА ЧЕРЕЗ РЕКУ ВИДИТ ГРЕКА В РЕЧКЕ РАК СУНУЛ ГРЕКА РУКУ В РЕКУ РАК ЗА РУКУ ГРЕКУ ЦАП».

image loader

2.1 Блочное кодирование

Информация в ПК уже представлена в виде блоков по 8 бит, но мы, зная контекст, попробуем представить её в виде блоков меньшего размера. Для этого нам нужно собрать информацию о представленных символах и, на будущее, сразу подсчитаем частоту использования каждого символа:

Источник

Кодирование информации

Кодсистема условных знаков (символов) для передачи, обработки и хранения информации (сообщения).

Кодирование — процесс представления информации (сообщения) в виде кода.

Все множество символов, используемых для кодирования, называется алфавитом кодирования. Например, в памяти компьютера любая информация кодируется с помощью двоичного алфавита, содержащего всего два символа: 0 и 1.

Научные основы кодирования были описаны К.Шенноном, который исследовал процессы передачи информации по техническим каналам связи (теория связи, теория кодирования). При таком подходе кодирование понимается в более узком смысле: как переход от представления информации в одной символьной системе к представлению в другой символьной системе. Например, преобразование письменного русского текста в код азбуки Морзе для передачи его по телеграфной связи или радиосвязи. Такое кодирование связано с потребностью приспособить код к используемым техническим средствам работы с информацией (см. “Передача информации”).

Декодированиепроцесс обратного преобразования кода к форме исходной символьной системы, т.е. получение исходного сообщения. Например: перевод с азбуки Морзе в письменный текст на русском языке.

В более широком смысле декодирование — это процесс восстановления содержания закодированного сообщения. При таком подходе процесс записи текста с помощью русского алфавита можно рассматривать в качестве кодирования, а его чтение — это декодирование.

Цели кодирования и способы кодирования

Способ кодирования одного и того же сообщения может быть разным. Например, русский текст мы привыкли записывать с помощью русского алфавита. Но то же самое можно сделать, используя английский алфавит. Иногда так приходится поступать, посылая SMS по мобильному телефону, на котором нет русских букв, или отправляя электронное письмо на русском языке из-за границы, если на компьютере нет русифицированного программного обеспечения. Например, фразу: “Здравствуй, дорогой Саша!” приходится писать так: “Zdravstvui, dorogoi Sasha!”.

Существуют и другие способы кодирования речи. Например, стенографиябыстрый способ записи устной речи. Ею владеют лишь немногие специально обученные люди — стенографисты. Стенографист успевает записывать текст синхронно с речью говорящего человека. В стенограмме один значок обозначал целое слово или словосочетание. Расшифровать (декодировать) стенограмму может только стенографист.

Приведенные примеры иллюстрируют следующее важное правило: для кодирования одной и той же информации могут быть использованы разные способы; их выбор зависит от ряда обстоятельств: цели кодирования, условий, имеющихся средств. Если надо записать текст в темпе речи — используем стенографию; если надо передать текст за границу — используем английский алфавит; если надо представить текст в виде, понятном для грамотного русского человека, — записываем его по правилам грамматики русского языка.

Еще одно важное обстоятельство: выбор способа кодирования информации может быть связан с предполагаемым способом ее обработки. Покажем это на примере представления чисел — количественной информации. Используя русский алфавит, можно записать число “тридцать пять”. Используя же алфавит арабской десятичной системы счисления, пишем: “35”. Второй способ не только короче первого, но и удобнее для выполнения вычислений. Какая запись удобнее для выполнения расчетов: “тридцать пять умножить на сто двадцать семь” или “35 х 127”? Очевидно — вторая.

Однако если важно сохранить число без искажения, то его лучше записать в текстовой форме. Например, в денежных документах часто сумму записывают в текстовой форме: “триста семьдесят пять руб.” вместо “375 руб.”. Во втором случае искажение одной цифры изменит все значение. При использовании текстовой формы даже грамматические ошибки могут не изменить смысла. Например, малограмотный человек написал: “Тристо семдесять пят руб.”. Однако смысл сохранился.

В некоторых случаях возникает потребность засекречивания текста сообщения или документа, для того чтобы его не смогли прочитать те, кому не положено. Это называется защитой от несанкционированного доступа. В таком случае секретный текст шифруется. В давние времена шифрование называлось тайнописью. Шифрование представляет собой процесс превращения открытого текста в зашифрованный, а дешифрование — процесс обратного преобразования, при котором восстанавливается исходный текст. Шифрование — это тоже кодирование, но с засекреченным методом, известным только источнику и адресату. Методами шифрования занимается наука под названием криптография (см. “Криптография”).

Читайте также:  лифан х60 код краски где находится
История технических способов кодирования информации

С появлением технических средств хранения и передачи информации возникли новые идеи и приемы кодирования. Первым техническим средством передачи информации на расстояние стал телеграф, изобретенный в 1837 году американцем Сэмюэлем Морзе. Телеграфное сообщение — это последовательность электрических сигналов, передаваемая от одного телеграфного аппарата по проводам к другому телеграфному аппарату. Эти технические обстоятельства привели С.Морзе к идее использования всего двух видов сигналов — короткого и длинного — для кодирования сообщения, передаваемого по линиям телеграфной связи.

Сэмюэль Финли Бриз Морзе (1791–1872), США

Такой способ кодирования получил название азбуки Морзе. В ней каждая буква алфавита кодируется последовательностью коротких сигналов (точек) и длинных сигналов (тире). Буквы отделяются друг от друга паузами — отсутствием сигналов.

Самым знаменитым телеграфным сообщением является сигнал бедствия “SOS” (Save Our Souls — спасите наши души). Вот как он выглядит в коде азбуки Морзе, применяемом к английскому алфавиту:

Три точки (буква S), три тире (буква О), три точки (буква S). Две паузы отделяют буквы друг от друга.

На рисунке показана азбука Морзе применительно к русскому алфавиту. Специальных знаков препинания не было. Их записывали словами: “тчк” — точка, “зпт” — запятая и т.п.

Характерной особенностью азбуки Морзе является переменная длина кода разных букв, поэтому код Морзе называют неравномерным кодом. Буквы, которые встречаются в тексте чаще, имеют более короткий код, чем редкие буквы. Например, код буквы “Е” — одна точка, а код твердого знака состоит из шести знаков. Это сделано для того, чтобы сократить длину всего сообщения. Но из-за переменной длины кода букв возникает проблема отделения букв друг от друга в тексте. Поэтому приходится для разделения использовать паузу (пропуск). Следовательно, телеграфный алфавит Морзе является троичным, т.к. в нем используется три знака: точка, тире, пропуск.

Равномерный телеграфный код был изобретен французом Жаном Морисом Бодо в конце XIX века. В нем использовалось всего два разных вида сигналов. Не важно, как их назвать: точка и тире, плюс и минус, ноль и единица. Это два отличающихся друг от друга электрических сигнала. Длина кода всех символов одинаковая и равна пяти. В таком случае не возникает проблемы отделения букв друг от друга: каждая пятерка сигналов — это знак текста. Поэтому пропуск не нужен.

Жан Морис Эмиль Бодо (1845–1903), Франция

Код Бодо — это первый в истории техники способ двоичного кодирования информации. Благодаря этой идее удалось создать буквопечатающий телеграфный аппарат, имеющий вид пишущей машинки. Нажатие на клавишу с определенной буквой вырабатывает соответствующий пятиимпульсный сигнал, который передается по линии связи. Принимающий аппарат под воздействием этого сигнала печатает ту же букву на бумажной ленте.

В современных компьютерах для кодирования текстов также применяется равномерный двоичный код (см. “Системы кодирования текста”).

Методические рекомендации

Тема кодирования информации может быть представлена в учебной программе на всех этапах изучения информатики в школе.

В пропедевтическом курсе ученикам чаще предлагаются задачи, не связанные с компьютерным кодированием данных и носящие, в некотором смысле, игровую форму. Например, на основании кодовой таблицы азбуки Морзе можно предлагать как задачи кодирования (закодировать русский текст с помощью азбуки Морзе), так и декодирования (расшифровать текст, закодированный с помощью азбуки Морзе).

Выполнение таких заданий можно интерпретировать как работу шифровальщика, предлагая различные несложные ключи шифрования. Например, буквенно-цифровой, заменяя каждую букву ее порядковым номером в алфавите. Кроме того, для полноценного кодирования текста в алфавит следует внести знаки препинания и другие символы. Предложите ученикам придумать способ для отличия строчных букв от прописных.

При выполнении таких заданий следует обратить внимание учеников на то, что необходим разделительный символ — пробел, поскольку код оказывается неравномерным: какие-то буквы шифруются одной цифрой, какие-то — двумя.

Предложите ученикам подумать о том, как можно обойтись без разделения букв в коде. Эти размышления должны привести к идее равномерного кода, в котором каждый символ кодируется двумя десятичными цифрами: А — 01, Б — 02 и т.д.

Подборки задач на кодирование и шифрование информации имеются в ряде учебных пособий для школы [4].

В базовом курсе информатики для основной школы тема кодирования в большей степени связывается с темой представления в компьютере различных типов данных: чисел, текстов, изображения, звука (см. “Информационные технологии” ).

В старших классах в содержании общеобразовательного или элективного курса могут быть подробнее затронуты вопросы, связанные с теорией кодирования, разработанной К.Шенноном в рамках теории информации. Здесь существует целый ряд интересных задач, понимание которых требует повышенного уровня математической и программистской подготовки учащихся. Это проблемы экономного кодирования, универсального алгоритма кодирования, кодирования с исправлением ошибок. Подробно многие из этих вопросов раскрываются в учебном пособии “Математические основы информатики” [1].

1. Андреева Е.В., Босова Л.Л., Фалина И.Н. Математические основы информатики. Элективный курс. М.: БИНОМ. Лаборатория Знаний, 2005.

2. Бешенков С.А., Ракитина Е.А. Информатика. Систематический курс. Учебник для 10-го класса. М.: Лаборатория Базовых Знаний, 2001, 57 с.

3. Винер Н. Кибернетика, или Управление и связь в животном и машине. М.: Советское радио, 1968, 201 с.

4. Информатика. Задачник-практикум в 2 т. / Под ред. И.Г. Семакина, Е.К. Хеннера. Т. 1. М.: БИНОМ. Лаборатория Знаний, 2005.

5. Кузнецов А.А., Бешенков С.А., Ракитина Е.А., Матвеева Н.В., Милохина Л.В. Непрерывный курс информатики (концепция, система модулей, типовая программа). Информатика и образование, № 1, 2005.

6. Математический энциклопедический словарь. Раздел: “Словарь школьной информатики”. М.: Советская энциклопедия, 1988.

7. Фридланд А.Я. Информатика: процессы, системы, ресурсы. М.: БИНОМ. Лаборатория Знаний, 2003.

Источник

Кодирование информации. Коды. Системы кодирования

Урок 4. Информатика 8 класс

20210413 vu tg sbscrb2

4

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Читайте также:  коды anime fight simulator 2021

Получите невероятные возможности

20210706 unblock slide1

20210706 unblock slide2

20210706 unblock slide3

Конспект урока «Кодирование информации. Коды. Системы кодирования»

Для обмена информацией с другими людьми человек использует естественные и формальные языки. Представление информации с помощью какого-либо языка часто называют кодированием.

Все множество символов, используемых для кодирования, называется алфавитом кодирования. Например, в памяти компьютера любая информация кодируется с помощью двоичного алфавита, содержащего всего два символа: 0 и 1.

image001

Код состоит из определенного количества знаков, т. е. имеет определенную длину.

Количество знаков в коде называется длиной кода.

image002

В процессе обмена информацией между людьми часто приходится переходить от одной формы представления информации к другой. Так, в процессе чтения вслух производится переход от письменной формы представления информации к устной и, наоборот, в процессе диктанта или записи объяснения учителя происходит переход от устной формы к письменной. В процессе преобразования информации из одной формы представления в другую происходит перекодирование информации.

image003

Информация может быть представлена в форме числа, текста, графики или звука.

image004

Средством перекодирования служит таблица соответствия знаковых систем (таблица перекодировки), которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем.

image005

Чаще всего кодированию подвергаются тексты на естественных языках. Существуют 3 основных способа кодирования текста:

Полный набор символов, используемый для кодирования текста, называется алфавитом или азбукой.

Рассмотрим некоторые способы кодирования.

1. Кодированием информации с помощью букв русского алфавита. Суть этого способа заключается в том, чтобы каждую букву сообщения заменить ее номером в алфавите.

image006

2. Флажковая азбука. При помощи этой азбуки осуществляется передача и прием сообщений между судами и кораблями в пределах прямой видимости. Здесь, каждой букве соответствует определенный флаг.

image007

Информация кодируется тремя «буквами»:

· длинный сигнал (тире),

· короткий сигнал (точка),

· отсутствие сигнала (пауза) для разделения букв.

image008

Таким образом, кодирование сводится к использованию набора символов, расположенных в строго определенном порядке.

4. Шифр Цезаря. Этот шифр реализует следующее преобразование текста: каждая буква исходного текста заменяется третьей после нее буквой в алфавите, которая считается написанным по кругу.

image009

5. Перевод чисел из одной системы счисления в другую.

Пусть требуется перевести двоичное число в десятичную систему счисления.

Чтобы осуществлять перевод из двоичной системы счисления в десятичную, следует для начала пронумеровать разряды исходного числа справа налево, начиная с нуля.

image010

Запишем число в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2:

image011

И вычислив по правилам десятичной арифметики, получили число 232.

Пусть теперь требуется перевести двоичное число в восьмеричную систему счисления. Для этого следует разбить это двоичное число на триады, начиная с младшего бита.

Если старшая триада не заполнена до конца, как в нашем случае, следует дописать в ее старшие разряды нули. После этого необходимо заменить двоичные триады, начиная с младшей, на числа, равные им в восьмеричной системе. Это числа: 4, 7, 6, 6, 4, 5, 5, 2.

Таким образом, наше двоичное число запишется в виде:

image012

Аналогично поступаем при переводе чисел из двоичной системы счисления в шестнадцатеричную, но разбиение двоичного числа производим на тетрады. Для примера будем использовать то же двоичное число, что и при переводе в восьмеричную систему счисления.

Заменяя двоичные тетрады на их шестнадцатеричные значения, то есть на C, B, D, C, 6, 5, получим искомое шестнадцатеричное число:

image013

А теперь давайте мы попробуем перевести число 158 из десятичной в двоичную систему счисления. Для этого нужно выполнить последовательное деление нацело числа 158 на основании новой системы счисления, то есть на 2. Получим:

image014

Далее число 79 делим на 2. Аналогичные действия выполняем до тех пор, пока частное не станет равным единице.

image015

Затем запишем остатки от деления в обратном порядке, заменив их цифрами новой системы счисления, т.е. получили число 11101000.

При переводе числа из шестнадцатеричной системы счисления в двоичную, необходимо только заменить каждую цифру шестнадцатеричного числа ее эквивалентом в двоичной системе счисления (используя таблицу соответствия). И не забываем, что каждое шестнадцатеричное число следует заменять двоичным, дополняя его до 4 разрядов (в сторону старших разрядов).

Пусть требуется перевести шестнадцатеричное число F1 в двоичное число. Воспользовавшись таблицей соответствия, получим:

image016

F соответствуют четыре единицы в двоичной системе счисления, а 1 соответствует такая запись 0, 0, 0, 1 в двоичной системе счисления.

Итак, число F1 в двоичной системе счисления запишется так 11110001.

Пусть теперь нам нужно перевести число F1 из шестнадцатеричной системы счисления в восьмеричную. Обычно при таком переводе чисел вначале шестнадцатеричное число переводят в двоичное, затем разбивают его на триады, начиная с младшего бита, а потом заменяют триады соответствующими им эквивалентами в восьмеричной системе. В итоге у на получится, что исходному числу в восьмеричной системе счисления соответствует число 361.

Источник

Информатика. 7 класс

Конспект урока

Кодирование информации. Двоичный код

Перечень вопросов, рассматриваемых в теме:

Дискретизация информации – процесс преобразования информации из непрерывной формы представления в дискретную. Чтобы представить информацию в дискретной форме, её следует выразить с помощью символов какого-нибудь естественного или формального языка.

Алфавит языка – конечный набор отличных друг от друга символов, используемых для представления информации. Мощность алфавита – это количество входящих в него символов.

Алфавит, содержащий два символа, называется двоичным алфавитом. Представление информации с помощью двоичного алфавита называют двоичным кодированием. Двоичное кодирование универсально, так как с его помощью может быть представлена любая информация.

1. Босова Л. Л. Информатика: 7 класс. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2017. – 226 с.

Теоретический материал для самостоятельного изучения

Для решения своих задач человеку часто приходится преобразовывать имеющуюся информацию из одной формы представления в другую. Например, при чтении вслух происходит преобразование информации из дискретной (текстовой) формы в непрерывную (звук). Во время диктанта на уроке русского языка, наоборот, происходит преобразование информации из непрерывной формы (голос учителя) в дискретную (записи учеников).

Информация, представленная в дискретной форме, значительно проще для передачи, хранения или автоматической обработки. Поэтому в компьютерной технике большое внимание уделяется методам преобразования информации из непрерывной формы в дискретную.

Читайте также:  коды проклятые земли опыт

Дискретизация информации – процесс преобразования информации из непрерывной формы представления в дискретную.

Рассмотрим суть процесса дискретизации информации на примере.

На метеорологических станциях имеются самопишущие приборы для непрерывной записи атмосферного давления. Результатом их работы являются барограммы – кривые, показывающие, как изменялось давление в течение длительных промежутков времени. Одна из таких кривых, вычерченная прибором в течение семи часов проведения наблюдений, показана на рисунке 1.

На основании полученной информации можно построить таблицу, содержащую показания прибора в начале измерений и на конец каждого часа наблюдений.

a492151c 4f2d 4d9e bf19 338e290df0e4

Полученная таблица даёт не совсем полную картину того, как изменялось давление за время наблюдений: например, не указано самое большое значение давления, имевшее место в течение четвёртого часа наблюдений. Но если занести в таблицу значения давления, наблюдаемые каждые полчаса или 15 минут, то новая таблица будет давать более полное представление о том, как изменялось давление.

Таким образом, информацию, представленную в непрерывной форме (барограмму, кривую), мы с некоторой потерей точности преобразовали в дискретную форму (таблицу).

В дальнейшем вы познакомитесь со способами дискретного представления звуковой и графической информации.

В общем случае, чтобы представить информацию в дискретной форме, её следует выразить с помощью символов какого-нибудь естественного или формального языка. Таких языков тысячи. Каждый язык имеет свой алфавит.

Алфавит – конечный набор отличных друг от друга символов (знаков), используемых для представления информации. Мощность алфавита – это количество входящих в него символов (знаков).

Алфавит, содержащий два символа, называется двоичным алфавитом (рис. 3). Представление информации с помощью двоичного алфавита называют двоичным кодированием. Закодировав таким способом информацию, мы получим её двоичный код.

Рассмотрим в качестве символов двоичного алфавита цифры 0 и 1. Покажем, что любой алфавит можно заменить двоичным алфавитом. Прежде всего, присвоим каждому символу рассматриваемого алфавита порядковый номер. Номер представим с помощью двоичного алфавита. Полученный двоичный код будем считать кодом исходного символа.

7f28bccf aa35 41ee a71e 03c78f37c490

Если мощность исходного алфавита больше двух, то для кодирования символа этого алфавита потребуется не один, а несколько двоичных символов. Другими словами, порядковому номеру каждого символа исходного алфавита будет поставлена в соответствие цепочка (последовательность) из нескольких двоичных символов. Правило получения двоичных кодов для символов алфавита мощностью больше двух можно представить схемой на рисунке.

34aac773 6ce5 4757 9294 2ebb2f3f3383

Двоичные символы (0,1) здесь берутся в заданном алфавитном порядке и размещаются слева направо. Двоичные коды (цепочки символов) читаются сверху вниз. Все цепочки (кодовые комбинации) из двух двоичных символов позволяют представить четыре различных символа произвольного алфавита:

021ab1cc 1839 40c5 b587 6fff53f6830c

Цепочки из трёх двоичных символов получаются дополнением двухразрядных двоичных кодов справа символом 0 или 1. В итоге кодовых комбинаций из трёх двоичных символов получается 8 – вдвое больше, чем из двух двоичных символов:

3b2b9e59 f377 46ee a205 93f3da91ede2

Соответственно, четырёхразрядный двоичный код позволяет получить 16 кодовых комбинаций, пятиразрядный – 32, шестиразрядный – 64 и т. д.

Длину двоичной цепочки – количество символов в двоичном коде – называют разрядностью двоичного кода.

c1f6e14c 80dc 4327 8148 2769968885d4

Обратите внимание, что:

32 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 и т. д.

Здесь количество кодовых комбинаций представляет собой произведение некоторого количества одинаковых множителей, равного разрядности двоичного кода.

Если количество кодовых комбинаций обозначить буквой N, а разрядность двоичного кода – буквой i, то выявленная закономерность в общем виде будет записана так:

86dc198b b8cc 4f43 861a 08f8f21731e8

В математике такие произведения записывают в виде:

Запись 2 i читают так: «2 в i-й степени».

Задача. Вождь племени Мульти поручил своему министру разработать двоичный код и перевести в него всю важную информацию. Двоичный код какой разрядности потребуется, если алфавит, используемый племенем Мульти, содержит 16 символов? Выпишите все кодовые комбинации.

Чтобы выписать все кодовые комбинации из четырёх 0 и 1, воспользуемся схемой на рис. 1.13: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

Универсальность двоичного кодирования

В начале нашей беседы вы узнали, что информация, представленная в непрерывной форме, может быть выражена с помощью символов некоторого естественного или формального языка. В свою очередь, символы произвольного алфавита могут быть преобразованы в двоичный код. Таким образом, с помощью двоичного кода может быть представлена любая информация на естественных и формальных языках, а также изображения и звуки (рис. 6). Это и означает универсальность двоичного кодирования.

ccc9f3e5 df44 430c 8664 22e39f9f8bd7

Двоичные коды широко используются в компьютерной технике, требуя только двух состояний электронной схемы – «включено» (это соответствует цифре 1) и «выключено» (это соответствует цифре 0).

Простота технической реализации – главное достоинство двоичного кодирования. Недостаток двоичного кодирования – большая длина получаемого кода.

Равномерные и неравномерные коды

Различают равномерные и неравномерные коды. Равномерные коды в кодовых комбинациях содержат одинаковое число символов, неравномерные – разное.

Выше мы рассмотрели равномерные двоичные коды.

Примером неравномерного кода может служить азбука Морзе, в которой для каждой буквы и цифры определена последовательность коротких и длинных сигналов. Так, букве Е соответствует короткий сигнал («точка»), а букве Ш – четыре длинных сигнала (четыре «тире»). Неравномерное кодирование позволяет повысить скорость передачи сообщений за счёт того, что наиболее часто встречающиеся в передаваемой информации символы имеют самые короткие кодовые комбинации.

Разбор решения заданий тренировочного модуля

№1.Тип задания: ввод с клавиатуры пропущенных элементов в тексте

Переведите десятичное число 273 в двоичную систему счисления.

Воспользуемся алгоритмом перевода целых чисел из системы с основанием p в систему с основанием q:

1. Основание новой системы счисления выразить цифрами исходной системы счисления и все последующие действия производить в исходной системе счисления.

2. Последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех пор, пока не получим частное, меньшее делителя.

3. Полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.

4. Составить число в новой системе счисления, записывая его, начиная с последнего остатка.

8780ed92 c210 4bd5 99b9 5ceceaa833f9

Ответ: 27310= 100010001.

№2. Тип задания: единичный / множественный выбор.

Четыре буквы латинского алфавита закодированы кодами различной длины:

Источник

Поделиться с друзьями
admin
Здоровый образ жизни: советы и рекомендации
Adblock
detector